DEPARTAMENTO	ELECTRONICA Y CIRCUITOS			
ASIGNATURA	EC1211 CIRCUITOS ELECTRICOS			
HORAS/SEMANA	T:3	P:2	L:1	U : 3
REQUISITOS	MA1116, FS1111			

PROGRAMA

OBJETIVO GENERAL DEL CURSO

A lo largo del curso el estudiante desarrollara en forma activa y cooperativa los fundamentos teóricos y las técnicas y métodos que permiten analizar y resolver circuitos eléctricos en corriente continua y corriente alterna.

CONTENIDOS

- 1. INTRODUCCIÓN A LAS REDES ELECTRICAS. Conceptos básicos: Campo magnético, campo eléctrico, voltaje, corriente, potencia. Direcciones y polaridades de referencia. Curva característica de Voltaje-Corriente. Leyes de Kirchhoff. El resistor y la Ley de Ohm. Fuentes. Conexión de resistores. Conexión de fuentes. Reducción de circuito.
- 2. ANALISIS DE REDES RESISTIVAS. Método de las corrientes de mallas. Método de los voltajes de nodos. Teoremas de Redes (Superposición, Thevenin, Norton, Máxima transferencia de potencia).
- 3. CAPACITORES, INDUCTORES Y FORMAS DE ONDA. Capacitores e inductores. Condiciones iniciales y finales. Continuidad. Formas de onda: escalón unitario, impulso unitario, exponencial, forma de onda sinusoidal. Circuitos de primer orden y de segundo orden: Respuesta a cero entrada, respuesta a estado cero, respuesta completa.
- 4. CIRCUITOS Y POTENCIA EN REGIMEN SINUSOIDAL PERMANENTE (RSP). Respuesta de un circuito en RSP. Concepto de fasor. Operación con fasores. Inmitancia compleja. Análisis de circuitos en RSP. Introducción a potencia en RSP: potencia instantánea, potencia Compleja, potencia real, potencia reactiva. Factor de potencia. Teorema de máxima transferencia de potencia. Corrección del factor de potencia. Resonancia serie, Resonancia paralelo.

ESTRATEGIAS METODOLÓGICAS

La estrategia metodológica para la ejecución del curso es la de clases magistrales con ciclos de preguntas y respuestas y discusión colectiva, sesiones prácticas guiadas, consulta individual, apoyo audiovisual y prácticas de laboratorio.

PRACTICAS DE LABORATORIO

Las prácticas consisten en experimentos demostrativos de la respuesta de redes eléctricas utilizando circuitos e instrumental de medición básicos, así como simulaciones computacionales con herramientas de software tales como PSPICE.

ESTRATEGIAS DE EVALUACIÓN

Las estrategias de evaluación consisten en exámenes y tareas escritas. Las sesiones de laboratorio se evaluarán mediante exámenes cortos e informes.

FUENTES DE INFORMACIÓN

- 1. Dorf, R. y Svoboda, J. (2006) Circuitos Eléctricos. 6ª Edición. John Wiley & Sons.
- 2. Alexander, C.; Sadiku M. (2002) Fundamentos de Circuitos Eléctricos. 1ª Edición. Mc Graw Hill.
- 3. Irwin J. D. Engineering Circuits Analysis. 6ta edición. Mc. Graw-Hill. 2002.